ARDS with COVID-19. An intermediate Vt (7–8 ml/kg PBW) ventilation strategy was applied to the first four patients to increase pulmonary efficiency to eliminate CO₂, and this was used in the next four patients.

Gas exchange consists of oxygenation and ventilation. Oxygenation is quantified by the PaO₂/FiO₂ ratio, and this method has gained wide acceptance, particularly since publication of the Berlin definition of ARDS (7). However, the Berlin definition does not include additional pathophysiological information about ARDS, such as alveolar ventilation, as measured by pulmonary dead space, which is an important predictor of outcome (8). Increased pulmonary dead space reflects the inefficiency of the lungs to eliminate CO₂, which may lead to hypercapnia.

In our patients with ARDS with COVID-19, hypercapnia was common at ICU admission with low Vt ventilation. Assuming the anatomic portion of dead space is constant, increasing Vt with constant respiratory rate would effectively increase alveolar ventilation. Any such increase in Vt would decrease PaCO₂, which would be captured by VR (6). VR, a novel method to monitor ventilatory adequacy at the bedside (4–6), was very high in our patients, reflecting increased pulmonary dead space and inadequacy of ventilation.

With an acceptable plateau pressure and driving pressure, titration of Vt was performed. PaCO₂ and VR were significantly decreased when an intermediate Vt (7–8 ml/kg PBW) was applied. We suggest that intermediate Vt (7–8 ml/kg PBW) is recommended for such patients. Therefore, low Vt may not be the best approach for all patients with ARDS, particularly those with a less severe decrease in respiratory system compliance and inadequacy of ventilation.

In summary, we found that hypercapnia was common in patients with COVID-19–associated ARDS while using low Vt ventilation. VR was increased in these patients, which reflected increased pulmonary dead space and inadequacy of ventilation. An intermediate Vt was used to correct hypercapnia efficiently, while not excessively increasing driving pressure. Clinicians must have a high index of suspicion for increased pulmonary dead space when patients with COVID-19–related ARDS present with hypercapnia.

Author disclosures are available with the text of this letter at www.atlsjournals.org.

Acknowledgment: The authors thank Dr. Arthur S. Slutsky for the invaluable assistance with the manuscript.

Xiaoxing Liu, M.D.*
Xuegong Liu, M.D.*
Yonghao Xu, M.D., Ph.D.
Zhiheng Xu, M.D., Ph.D.
Yongbo Huang, M.D., Ph.D.
Sibei Chen, M.D.
Shiyue Li, M.D.
Dongdong Liu, M.D.
Zhimin Lin, M.D.
Yimin Li, M.D., Ph.D.*
State Key Laboratory of Respiratory Diseases
Guangzhou, China

Guangzhou Institute of Respiratory Health
Guangzhou, China

and

The First Affiliated Hospital of Guangzhou Medical University
Guangzhou, China

*These authors contributed equally to this work.
†Corresponding author (e-mail: dryminli@vip.163.com).

References

Copyright © 2020 by the American Thoracic Society

COVID-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome

To the Editor:

In northern Italy, an overwhelming number of patients with coronavirus disease (COVID-19) pneumonia and acute respiratory failure have been admitted to our ICUs. Attention is primarily focused on increasing the number of beds, ventilators, and intensivists brought to bear on the problem, while the clinical approach to these patients is the one typically applied to severe acute respiratory distress syndrome (ARDS), namely, high positive end-expiratory pressure (PEEP) and prone positioning. However, the patients with COVID-19 pneumonia, despite meeting the Berlin definition of ARDS, present an atypical form of the syndrome. Indeed, the primary characteristic we are observing (and has been confirmed by colleagues in other hospitals) is a dissociation between their relatively well-preserved lung mechanics and the severity of hypoxemia. As shown in our first 16 patients (Figure 1), a respiratory system compliance of 50.2 ± 14.3 ml/cm H₂O is associated with a shunt fraction of 0.50 ± 0.11. Such a wide discrepancy is virtually never seen in most forms of ARDS. Relatively high compliance indicates a

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Originally Published in Press as DOI: 10.1164/rccm.202003-0817LE on March 30, 2020
well-preserved lung gas volume in this patient cohort, in sharp contrast to expectations for severe ARDS.

A possible explanation for such severe hypoxemia occurring in compliant lungs is a loss of lung perfusion regulation and hypoxic vasoconstriction. Actually, in ARDS, the ratio of the shunt fraction to the fraction of gasless tissue is highly variable, with a mean of 1.25 ± 0.80 (1). In eight of our patients with a computed tomography scan, however, we measured a ratio of 3.0 ± 2.1, suggesting a remarkable hyperperfusion of gasless tissue. If this is the case, the increases in oxygenation with high PEEP and/or prone positioning are not primarily due to recruitment, the usual mechanism in ARDS (2), but instead, in these patients with poorly recruitable lungs (3), result from the redistribution of perfusion in response to pressure and/or gravitational forces. We should consider that 1) in patients who are treated with continuous positive airway pressure or noninvasive ventilation and who present with clinical signs of excessive inspiratory efforts, intubation should be prioritized to avoid excessive intrathoracic negative pressures and self-inflicted lung injury (4); 2) high PEEP in a poorly recruitable lung tends to result in severe hemodynamic impairment and fluid retention; and 3) prone positioning of patients with relatively high compliance provides a modest benefit at the cost of a high demand for stressed human resources.

Given the above considerations, the best we can do while ventilating these patients is to “buy time” while causing minimal additional damage, by maintaining the lowest possible PEEP and gentle ventilation. We need to be patient.

Figure 1. (A) Distributions of the observations of the compliance values observed in our cohort of patients. (B) Distributions of the observations of the right-to-left shunt values observed in our cohort of patients.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Luciano Gattinoni, M.D.*
Medical University of Göttingen
Göttingen, Germany

Silvia Coppola, M.D.
University of Milan
Milan, Italy

Massimo Cressoni, M.D.
University of Milan-Bicocca
Milan, Italy

Mattia Busana, M.D.
Medical University of Göttingen
Göttingen, Germany

Sandra Rossi, M.D.
University Hospital Parma
Parma, Italy

Davide Chiumello, M.D.
University of Milan
Milan, Italy

ORCID IDs: 0000-0001-5380-2494 (L.G.); 0000-0002-0089-2905 (M.C.);
0000-0002-1626-1278 (M.B.); 0000-0002-9963-8121 (S.R.);
0000-0001-9260-3930 (D.C.).

*Corresponding author (e-mail: gattinoniluciano@gmail.com).

References

Copyright © 2020 by the American Thoracic Society