Release of mucins from cultured airway surface epithelial cells can be stimulated by extracellular ATP via a P2-purinergic receptor-mediated mechanism (K. C. Kim and B. C. Lee. 1991. Br. J. Pharmacol. 103:1053–1056). In this report, we studied the mechanism by which extracellular ATP induces the mucin release. We found that: (1) ATP increased both mucin release and generation of inositol phosphates in a dose-dependent fashion, and their dose-effect relationships were almost superimposed; (2) the increases in both mucin release and the phosphatidylinositol phosphate (PI) turnover by extracellular ATP were partially, but almost equally, blocked by the pretreatment with pertussis toxin (42% for mucin release and 44% for PI turnover). We conclude that in cultured airway goblet cells extracellular ATP stimulates mucin release by a signal transduction mechanism, which seems to involve coupling of ATP-activated P2 purinoceptors with phospholipase C, at least in part, via pertussis toxin-sensitive GTP-binding proteins. This may be an important finding in understanding the regulation of mucin release by airway goblet cells, since a number of agents present in the airway could influence this signal transduction pathway and subsequently modulate the mucin secretion.
American Journal of Respiratory Cell and Molecular Biology
Involvement of a Signal Transduction Mechanism in ATP-induced Mucin Release from Cultured Airway Goblet Cells
K. Chul Kim , Qiao-Xi Zheng , and Isabelle Van-Seuningen
Department of Pharmacology and Toxicology, University of Maryland School of Pharmacy, Baltimore, Maryland
Corresponding Author: K. ChulKim
Received: November 25, 1992