American Journal of Respiratory Cell and Molecular Biology

A thickened bronchial epithelial basement membrane has long been regarded as a histopathologic characteristic of bronchial asthma. As we had previously demonstrated that this phenomenon is due to the deposition of interstitial collagens and fibronectin, we have now sought to determine the nature of the cell responsible for this process by studying endobronchial biopsies from eight normal and seven asthmatic volunteers by immunohistochemistry and electron microscopy. Biopsies were stained with PR 2D3, a monoclonal antibody to myofibroblasts of the pericrypt sheath of the colon and a monoclonal antibody to alpha-smooth muscle actin. The thickness of the subepithelial collagen and the organelle content of the cells therein were determined by electron microscopy.

The subepithelial collagen thickness in the normal subjects ranged from 2.16 to 6.26 µm, while that in the asthmatic subjects ranged from 3.75 to 11.1 µm (Mann-Whitney test; P = 0.05). Elongated cells in the collagen layer were identified by staining with PR 2D3. As this antibody also stains smooth muscle, consecutive frozen sections were stained for alpha-smooth muscle actin and the number of positive cells per millimeter of basement membrane was subtracted from the count for PR 2D3. This yielded a count of 4.9 to 9.4 cells/mm in the normal subjects and 11.9 to 20.6 cells/mm in the asthmatics (P = 0.001). There was a highly significant correlation between the depth of subepithelial collagen and the number of PR 2D3-positive, alpha-smooth muscle actin-positive cells (Spearman rank correlation; r = 0.764 and P = 0.006). Electron microscopy confirmed the myofibroblastic nature of these cells. We propose that bronchial myofibroblasts are responsible for the characteristic subepithelial fibrosis seen in allergic asthma.

Related

No related items
American Journal of Respiratory Cell and Molecular Biology
3
5

Click to see any corrections or updates and to confirm this is the authentic version of record