
Am J Respir Crit Care Med Vol 165. pp 824–831, 2002
DOI: 10.1164/rccm.2105062
Internet address: www.atsjournals.org

 

The Failure of Interleukin-10–deficient Mice to 
Develop Airway Hyperresponsiveness Is Overcome 
by Respiratory Syncytial Virus Infection in
Allergen–sensitized/challenged Mice

 

MIKA J. MÄKELÄ, ARIHIKO KANEHIRO, AZZEDDINE DAKHAMA, LARRY BORISH, ANTHONY JOETHAM, RALPH TRIPP,
LARRY ANDERSON, and ERWIN W. GELFAND

 

Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado; Department of Medicine, 
University of Virginia, Charlottesville, Virginia; and Division of Viral and Rickettsial Diseases, National Center of Infectious Diseases,
Centers for Disease Control and Prevention, Atlanta, Georgia

 

Interleukin-10–deficient mice develop a robust pulmonary inflam-
matory response but no airway hyperresponsiveness (AHR) to in-
haled methacholine (MCh) following allergen sensitization and
challenge. In the present study, we investigated the effect of res-
piratory syncytial virus (RSV) infection on AHR and pulmonary in-
flammation in allergic IL-10

 

�

 

/

 

�

 

 mice. Unlike littermate control
mice, RSV-infected or ovalbumin (OVA)-sensitized/challenged IL-
10

 

�

 

/

 

�

 

 mice failed to develop significant AHR. In contrast, sensi-
tized/challenged IL-10

 

�

 

/

 

�

 

 mice infected with RSV did develop AHR
accompanied by increased eosinophil numbers, both in bronchoal-
veolar lavage (BAL) and pulmonary tissue, and mucin production
in airway epithelium. The cytokine profile in OVA-sensitized/chal-
lenged IL-10

 

�

 

/

 

�

 

 mice was skewed toward a Th1 response but af-
ter RSV infection, this response was more of a Th2 type, with in-
creased IL-5 levels in the BAL. Studies with an RSV mutant that
lacks the G and SH genes showed equal enhancement of the AHR
response as the parental wild-type strain, indicating that G pro-
tein is not essential to this response. These data suggest that RSV
infection can overcome the failure of development of AHR in aller-
gic IL-10

 

�

 

/

 

�

 

 mice.
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Although respiratory syncytial virus (RSV) bronchiolitis in
early life is associated with later episodes of wheezing during
childhood (1), the existing data are controversial concerning
the role of RSV as a true risk factor in asthma development
and allergic sensitization. The study by Sigurs and coworkers
(2) found bronchiolitis during the first year of life to be a risk
factor both for the development of asthma and sensitization to
common allergens during the subsequent 2 yr. In the Tucson
cohort study, however, the association of frequent wheezing
and early RSV bronchiolitis was not associated with an in-
creased risk of allergic sensitization (1). In another cohort
study, positive serology for RSV infection correlated with
aeroallergen sensitization during the first year of life but not
at later times (3). It seems likely, therefore, that predisposing
factors such as altered airway function and/or immunogenetic
factors determine which children ultimately develop asthma.

RSV infection has been shown to induce expression of in-
terleukin-10 (IL-10) in human macrophages (4) and in mouse

pulmonary T cells (5). Interleukin-10 is an important regula-
tory cytokine that can mediate a number of biological activi-
ties (6). Data derived from both 

 

in vivo

 

 and 

 

in vitro

 

 studies
suggest that the biological effects of IL-10 can vary depending
on the surrounding cytokine and cellular milieu and timing of
expression during the immune response. For example, in a
murine allergic sensitization model, IL-10 suppressed or de-
layed development of pulmonary eosinophilia when adminis-
tered at the time of antigen challenge: given 1 h after the chal-
lenge, the cytokine had no effect (7). 

 

In vitro

 

, preincubation of
resting T cell clones with IL-10 enhanced their capacity to pro-
duce cytokines after subsequent activation (8). However, when
IL-10 was added during the activation step, inhibition of IL-2
synthesis was observed.

The role of IL-10 in asthma remains controversial. Some
studies found IL-10 expression to be higher in subjects with
asthma than in control subjects (9–11) whereas others found
lower IL-10 levels (12–15). Diminished IL-10 production
could result in Th2 cytokine skewing in allergic mice, as dem-
onstrated in a model of bronchopulmonary aspergillosis (16).
In a mouse model of allergic sensitization, we have recently
shown that IL-10 may play an important role in the develop-
ment of airway hyperresponsiveness (AHR). IL-10–deficient
mice sensitized and challenged with ovalbumin (OVA) devel-
oped a robust pulmonary inflammatory response but not AHR
(17). After reconstitution with IL-10 through adenovirus-
mediated gene transfer, the mice developed AHR. van Scott
and coworkers observed an increase in AHR despite a de-
crease in pulmonary inflammation when allergen-sensitized
and challenged wild-type mice were administered recombi-
nant IL-10 protein (18). In the present study, we further evalu-
ated the role of IL-10 in allergic lung inflammation, analyzing
the effects of RSV infection on airway function and inflamma-
tion in sensitized and challenged IL-10

 

�

 

/

 

�

 

 mice.

 

METHODS

 

Animals

 

Homozygous IL-10–deficient mice (IL-10

 

�

 

/

 

�

 

) on a C57BL/6 back-
ground (C57BL/6-IL-10(tm1Cgn) (19) were originally obtained from
Dr. Werner Müller, Cologne, Germany. These mice and littermate
control mice were bred and housed in specific pathogen-free condi-
tions and maintained on an OVA-free diet in the Biological Re-
sources Center at National Jewish Medical and Research Center.
Both female and male mice, 6–10 wk of age were used in the experi-
ments. Control mice were matched with the deficient mice with re-
gard to both age and sex in each experimental group.

 

Virus

 

Human respiratory syncytial virus (Long strain, type A) was ob-
tained from American Type Culture Collection (ATCC; Manassas,
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VA) and was propagated in monolayers of HEp-2 cells (ATCC)
grown in Eagle’s minimum essential medium (Gibco, Grand Island,
NY) supplemented with 2% fetal bovine serum. At maximum cyto-
pathic effect, the cells were harvested and disrupted by sonication in

 

the same culture medium. The suspension was clarified by centrifu-
gation at 2,000 

 

�

 

 

 

g

 

 for 15 min at 18

 

�

 

 C and the resulting supernatant
was layered on top of a sucrose gradient (30% sucrose in 50 mM Tris
buffered-normal saline solution containing 1 mM ethylenediamine-
tetraacetate [EDTA], pH 7.5) and further centrifuged at 100,000 

 

�

 

 

 

g

 

for 2 h at 10

 

�

 

 C. The pellet containing virus was resuspended in 10 mM
phosphate-buffered saline (PBS) containing 15% sucrose and stored
in aliquots at 

 

�

 

70

 

�

 

 C. Viral titer was determined by standard plaque
assay combined with immunostaining for RSV. Uninfected HEp-2
cells were similarly processed to prepare a sham inoculum. Mice
were inoculated under light anesthesia (Avertin 2.5%, 0.015 ml/g
body weight) by intranasal administration of sham (or ultraviolet-
irradiated RSV) or RSV inoculum (10

 

6

 

 plaque-forming units (pfu) in
a total volume of 25 

 

�

 

l). Both the sham inoculum or UV-irradiated
RSV were shown to be ineffective in inducing AHR or inflammatory
changes.

For studying the effect of the RSV G protein on the eosinophilic
response, two strains of RSV were used. One of these, the B1 strain
expressed while the CP52 strain did not express the G and SH genes
(20). These virus strains were propagated as described previously
(21). Mice were infected with 10

 

4

 

 pfu of B1 or CP52 virus by intrana-
sal inoculation as described above.

 

Sensitization, Airway Challenge, and Infection of Mice

 

Mice were sensitized by intraperitoneal injection of OVA (17) in alum
or received PBS alone on Day 0 and Day 14. On Day 26 after initia-
tion of the protocol, mice were infected under light anesthesia (Tri-
bromo-ethanol 2.5%, 0.015 ml/g body weight) by intranasal inocula-
tion of RSV (10

 

6

 

 PFU in 25 

 

�

 

l PBS). Controls were sham infected
(UV-RSV or sham inoculum) in the same way. Mice were then chal-
lenged via the airways with OVA (1% in PBS) or PBS for 20 min on
Days 28, 29, and 30. On Day 32, airway function was measured and
specimens were collected for further analysis.

 

Determination of Airway Resistance and Dynamic Compliance

 

Airway resistance (R

 

L

 

) was determined before and after inhalation of
aerosolized methacholine (MCh) in anesthetized, tracheostomized,
and mechanically ventilated mice, as previously described (22). A
four-way connector was attached to the tracheostomy tube with two
ports connected to the inspiratory and expiratory sides of two ventila-
tors. Aerosolized MCh was administered for 10 breaths at a rate of 60
breaths/min, tidal volume of 500 

 

�

 

l by the second ventilator. After
each aerosol MCh challenge, the data were continuously collected for
1 to 5 min and maximum values of R

 

L

 

 were taken to express changes
in these functional parameters.

 

Monoclonal Antibody Treatments

 

Anti-mouse IL-5 monoclonal antibody (mAb), TRFK-5 (IgG

 

2b

 

), was
used in this study. One hundred micrograms of the stock mAb was di-
luted with PBS in a total volume of 100 

 

�

 

l, which was then given to
sensitized mice as a single intravenous injection, 2 h before the first
airway challenge. As a control, purified rat IgG

 

2b

 

 at the same dose and
volume was administered.

Figure 1. Airway responsiveness to MCh in IL-10–deficient mice. Mice
were sensitized and challenged with OVA and either infected with RSV
(OR) or sham infected (inactivated RSV) (OS). Shown are IL-10�/� mice
after sham infection (sham) alone (S), RSV infection (R), ip sensitized but
not challenged mice after RSV infection (ipR). Airway responsiveness was
monitored by measuring lung resistance (RL) as described in METHODS. B
shows lung resistance in WT mice; symbols as described for A. The results
for each group are expressed as means � SEM (n � 8–12 per group).
*Significant differences (ANOVA and Tukey–Kramer, p � 0.05) are indi-
cated (IL-10	/	/OR versus all other groups in A, IL-10	/	/OR versus IL-
10	/	/OS in B). BL � baseline, SAL � saline. #Significant differences (p �
0.05) between WT/OS or WT/R and the control WT/S.

Figure 2. Cellular composition of BAL fluid. IL-10–deficient (IL-
10�/�) and WT mice were sensitized/challenged and infected
as described in METHODS. BAL fluid was obtained from the same
groups described in the legend to Figure 1. The results for each
group are expressed as means � SEM. *Significant differences
between the groups (for example, eosinophils between IL-
10�/�/OS and each of the three other groups) (ANOVA and
Tukey–Kramer, p � 0.05).
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Bronchoalveolar Lavage

 

After assessment of R

 

L

 

, lungs were lavaged (17). Cytospin slides were
stained with Leukostat (Fisher Diagnostics, Pittsburgh, PA) and dif-
ferentiated in a blinded fashion by counting at least 200 cells under
light microscopy.

 

Measurement of Serum Immunoglobulins

 

Serum levels of total IgE, OVA-specific IgE, and IgG

 

1

 

 were measured
by ELISA as previously described (23).

 

Measurement of Cytokines in Bronchoalveolar
Lavage Fluid

 

Interferon (IFN)-

 




 

, IL-4, and IL-5 in the bronchoalveolar lavage fluid
(BALF) supernatants were detected by enzyme immunoassay (EIA) as
previously described (24). For IL-10, the OptEIA set was used according
to the manufacturer’s directions (PharMingen). For IL-13, a commercial
kit was used (R&D Systems, Minneapolis, MN). Cytokine levels were
determined by comparisons with the known standards. The limits of de-
tection were 30 pg/ml for IL-10 and 10 pg/ml for the other cytokines.

 

Histologic and Immunohistochemistry Studies

 

After obtaining the BALF, lungs were inflated through the tracheal
tube with 2 ml air and fixed in 10% formalin and blocks of lung tissue
were prepared (17). Tissue sections, 5 

 

�

 

m thick, were affixed to mi-
croscope slides and deparaffinized. The slides were stained with
hematoxylin and eosin (H&E), and periodic acid–Schiff (PAS) for
identification of mucus-containing cells, and examined under light mi-
croscopy. For quantitating mucus staining, PAS-positive goblet cells
in the airways were counted and the length of the basement mem-
brane (BM) in each studied section was measured using NIH Image
software (version 1.62). The results are given as mean number of
PAS-positive goblet cells per millimeter of BM after evaluating sev-
eral airways of three to five mice per group in a blinded fashion.

Cells containing major basic protein (MBP) in lung sections were
identified by immunohistochemical staining as described using rabbit
anti-mouse MBP (provided by Dr. J. Lee, Mayo Clinic Scottsdale,
Scottsdale, AZ) (25). The slides were examined in a blinded fashion
with a Nikon microscope equipped with a fluorescein filter system.
Numbers of eosinophils in the perivascular, peribronchial, and periph-
eral tissues were evaluated using the IPLab2 software (Signal Analyt-
ics, Vienna, VA) for the Macintosh computer counting five sections
per animal (three mice per group).

 

Statistical Analysis

 

The data were analyzed with the JMP statistical software package
(SAS Institute Inc., Cary, NC). Analysis of variance was used to de-
termine the levels of difference between all groups in measurements
of R

 

L

 

. Comparisons for all pairs were performed by Tukey–Kramer
honest significant difference (HSD) test. Significance levels were set
at a p value of 0.05. Values for all measurements are expressed as
mean 

 

�

 

 SEM. Differences in cytokine levels between groups were an-
alyzed by nonparametric ANOVA, the Kruskal–Wallis test. When
significant differences between groups were observed, comparison for
pairs was made by the Wilcoxon test with Bonferoni correction. Sig-
nificance levels were set at a p value of 0.05.

 

RESULTS

 

Airway Hyperresponsiveness in Allergen-sensitized
and Challenged Mice Infected with RSV

 

As shown in our previous study and confirmed here, IL-10–
deficient mice that were sensitized and challenged with OVA
(OS groups) (and in this case exposed to inactivated RSV, sham
infection) did not develop significant changes in RL (Figure
1A) when compared with wild-type (WT) mice (Figure 1B).
The airway response to inhaled MCh was also low in the IL-
10

 

�

 

/

 

�

 

 mice infected with RSV (R) groups compared with the
WT mice. Further, even following sensitization, RSV infection
of sensitized (but not challenged) IL-10–deficient mice had
only marginal effects (Figure 1A, ipR) without allergic-sensiti-
zation. However, when allergen-sensitized/challenged IL-10–
deficient mice were infected with RSV, airway responsiveness
was significantly enhanced (Figure 1A) (OR groups). An en-
hancement of AHR following RSV infection of sensitized and
challenged mice was also seen (Figure 1B). Inactivated RSV
induced only a marginal increase in AHR in the allergen sen-
sitized and challenged mice, a response that was significantly
lower than following live virus infection, indicating the impor-
tance for live virus infection in this response.

Figure 3. PAS-stained histological sections of murine lungs. Normal air-
ways and vessels after sensitization with OVA and exposure to nebu-
lized PBS in IL-10�/� mice (A). Representative sections from an IL-
10�/� mouse after RSV infection (B), after OVA sensitization/challenge
and sham-infection (C), and OVA sensitization/challenge and RSV in-
fection (D). Note the staining of single goblet cells within the respira-
tory epithelium in the RSV-infected OVA-sensitized/challenged mouse.

Figure 4. Number of mucin-producing goblet cells is increased in aller-
gen-sensitized/challenged mice infected with RSV. PAS-stained cells
were counted in five sites on the airway epithelium (at least two sepa-
rate airways) including three mice/group. In each studied site, length
of the basement membrane (BM) was measured by image analyzing
software and the results are given as mean number of goblet cells per
millimeter of BM. *Significant difference between groups (p � 0.05).
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BAL Analysis of Cells

 

There were no significant differences in the cellular profile in
BALF between naive IL-10

 

�

 

/

 

�

 

 and WT mice. After allergen
sensitization and challenge, the percentage of eosinophils was
significantly lower and neutrophil and macrophage percent-
ages were higher in the IL-10

 

�

 

/

 

�

 

 mice than in the WT mice
(Figure 2). RSV infection significantly increased the number
of eosinophils in the IL-10

 

�

 

/

 

�

 

 mice, to the levels in WT mice.
There were no detectable eosinophils in the BALF of nonsen-
sitized and challenged mice.

 

Histopathology

 

The allergen sensitization and challenge protocol induced sig-
nificant mononuclear and eosinophilic cell infiltration perivas-
cularly and peribronchially in both the IL-10

 

�

 

/

 

�

 

 and WT
mice, as we have shown earlier (17). In the H&E-stained sec-
tions, no obvious differences could be detected between sham-
and RSV-infected animals after allergen challenge of sensi-
tized mice (not shown). However, PAS staining of the sections
clearly showed an increase in mucus production, that is, air-
way goblet cell hyperplasia, both in the IL-10

 

�

 

/

 

�

 

 and the WT
mice after RSV infection (Figures 3 and 4).

Eosinophils in the pulmonary tissue were identified by im-
munofluorescence using an MBP-specific antibody (Figure 5).
Eosinophil counts were significantly lower in the IL-10

 

�

 

/

 

�

 

(Figure 6A) compared with the WT mice (Figure 6B). These
decreases were seen when eosinophil numbers were quanti-
tated in the perivascular, peribronchial, and peripheral air-
ways. However, after RSV infection the numbers increased to
levels observed in WT mice. These results paralleled those in
the BALF (Figure 2).

 

Cytokines and Immunoglobulins

 

Naive IL-10

 

�

 

/

 

�

 

 and WT mice had undetectable or very low
levels of IFN-

 




 

, IL-4, IL-5, and IL-13 in the BAL fluid. These
cytokines were analyzed at two different time points after al-
lergen sensitization and challenge, 12 h and 48 h after the last

 

airway challenge. There was a significant increase at both time
points in all of these cytokines except IFN-

 




 

. The most promi-
nent difference between the groups was that IL-10

 

�

 

/

 

�

 

 mice had
significantly lower levels of IL-5 than WT mice after allergen
sensitization/challenge. However, in OVA-sensitized/challenged
IL-10

 

�

 

/

 

�

 

 mice that were infected with RSV, the IL-5 levels
were comparable to those in WT mice (Figure 7). A similar
trend was seen with IL-13, but did not reach significance. RSV
infection did not have a significant effect on cytokine levels in
the WT mice.

Antibody levels, total IgE concentrations and OVA-spe-
cific IgG

 

1

 

 and IgG

 

2a

 

 levels in serum were significantly higher
in the IL-10

 

�

 

/

 

�

 

 sensitized/challenged mice than in the WT
mice, as demonstrated in our earlier study (17) (data not
shown). Although there was a tendency for RSV infection to
reduce all of these antibody levels, none of the differences be-
tween the IL-10

 

�

 

/

 

�

 

 and WT mice reached significance.

 

Treatment with Anti-IL5

 

To define the role of IL-5 in the increases in eosinophil num-
bers and AHR, IL-10

 

�

 

/

 

� mice were treated with anti–IL-5, 2 h
before the first airway challenge. This resulted in a dramatic
decrease in both the number of eosinophils in the BALF and
also AHR (Figure 8).

Effect of RSV Strain Lacking the G and SH Genes

Mice immunized with formalin-inactivated RSV vaccine de-
velop pulmonary eosinophilia after challenge with live virus.
The G glycoprotein appeared to be important in directing
this type of host response (26). To define whether the G pro-
tein was involved in the enhancement of AHR in IL-10�/�
mice, infection with a mutant RSV strain (CP52), which lacks
both G (glycoprotein) and SH (small hydrophobic protein)
genes, was carried out; as a control, the parental B1 strain
was used. As can be seen in Figure 9, both the B1 and the
CP52 strains induced similar increases in AHR in sensitized/
challenged mice. 

Figure 5. Staining of eosinophils with
an MBP antibody. A representative fig-
ure from IL-10�/� mice with OVA
challenge only (A), RSV infection (B),
OVA sensitization/challenge (C), and
OVA sensitization/challenge and RSV
infection (D).
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increased IL-5 levels were also observed in these mice. More-
over, these effects of infection of allergic mice were more pro-
nounced in the IL-10�/� than in the WT animals. The effects
of RSV infection followed by allergic sensitization up to 3 wk
after virus inoculation have been shown to result in enhanced
AHR and inflammation (27) and this enhancing effect could
be adoptively transferred by T lymphocytes, especially CD8
positive cells (28). This combination of RSV infection and al-
lergen sensitization and challenge resulted in changes in air-
way function similar to those seen following IL-10 gene recon-
stitution of allergic mice (17).

AHR is a complex phenomenon involving both immuno-
logical and neural mechanisms. Eosinophilic inflammation is
important for expression of AHR in many animal models (24,
25, 29, 30), but it is neither sufficient, as seen in our earlier
work with the IL-10�/� mice (17), nor perhaps necessary for
development of AHR in some models (31–33). Indeed, eosin-
ophil responses considerably lower than observed in the BAL
fluid and pulmonary tissue of IL-10�/� mice have been asso-
ciated with AHR in some studies. Therefore, it is unlikely that
the increase in eosinophils induced by RSV alone was suffi-
cient to reconstitute AHR in the IL-10–deficient mice. That
not withstanding, the eosinophilic component appeared neces-
sary for the response in infected and sensitized/challenged IL-
10–deficient mice as treatment with anti–IL-5 resulted in both
a decrease in eosinophil numbers and normalized the airway
responsiveness to inhaled MCh. How eosinophils contribute
to altered airway function is not clear (34). Moreover, the
presence of eosinophils per se does not indicate their state of
activation. Indeed, mouse eosinophils may not degranulate, at
least not in response to triggers that result in human eosino-
phil degranulation (35). Further, there are currently no mark-
ers of eosinophil activation.

Eosinophils have been shown to alter muscarinic control of
airway function (36). Guinea pigs sensitized/challenged with
OVA and infected with parainfluenza virus demonstrated
muscarinic (M2) receptor dysfunction that was abolished by
pretreatment with anti–IL-5. The authors interpreted these find-
ings to mean that sensitization to a nonviral antigen altered the
inflammatory response to viral infection, so that M2R dysfunc-
tion and hyperreactivity were ultimately eosinophil dependent.
Similar data have been obtained in allergic human subjects.

DISCUSSION

Previous data from this laboratory demonstrated that IL-10�/�
mice do not develop AHR after allergen sensitization and
challenge despite a significant pulmonary inflammatory re-
sponse including increased numbers of tissue and BAL fluid
eosinophils (17). When reconstituted with the IL-10 gene,
these mice became responsive to inhaled MCh, indicating an
important role for IL-10 in the development of altered airway
function. Here, we demonstrate that allergen-sensitized and
-challenged IL-10�/� mice infected with RSV are capable of
developing altered airway responsiveness to inhaled MCh de-
spite the absence of IL-10. Neither infection alone nor sensiti-
zation/challenge alone was capable of doing so. The response
to RSV in allergic mice was examined in an attempt to explain
how this viral infection may override the consequences of
IL-10 deficiency. Perhaps contributing were changes in the in-
flammatory response, cytokine levels, and increases in goblet
cell numbers. The inflammatory response was enhanced in in-
fected, allergic mice when compared with allergic mice. This
was seen as increases in numbers of eosinophils both in the
BAL fluid and in the lung tissue. Goblet cell hyperplasia and

Figure 6. Tissue eosinophilia is significantly increased in allergen-sensi-
tized/challenged IL-10�/� mice infected with RSV. Immunohistochem-
ical localization of lung tissue eosinophils was performed using an MBP
antibody as described in METHODS. Shown are results from IL-10�/�
(A) and WT (B) mice after OVA challenge alone (O), RSV infection
alone (R), OVA-sensitized/challenged mice infected with RSV (OR),
and sham-infected, OVA-sensitized/challenged mice (OS). Eosinophil
numbers (per mm2) in the perivascular (PV), peribronchial (PB), and
peripheral regions (PAR) were quantified. Results of each group are ex-
pressed as mean � SEM. *Significant difference (p � 0.05) between
RSV- and sham-infected allergic IL-10�/� mice.

Figure 7. RSV infection increases IL-5 levels in IL-10–deficient mice.
RSV-infected IL-10�/� mice have levels comparable to the WT mice.
OVA sensitized (two intraperitoneal injections 14 d apart) mice were
infected with RSV (OR) or sham preparation (OS) on Day 26 and chal-
lenged via the airways by OVA on Days 28, 29, and 30. Twelve hours
after the last airway challenge mice were killed and BAL was collected.
IL-5 and other cytokines were measured by ELISA. Level of detection
10 pg/ml. *Significant difference between groups (p � 0.05).
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Segmental allergen bronchoprovocation at the time of rhi-
novirus infection induced an enhanced eosinophilic recruit-
ment into airways (37) and potentiated AHR, especially in
subjects with asthma (38). Similarly, viral infections have been
shown to be major cause of exacerbations of asthma both in
adults and in children (39, 40).

The role of IL-10 in allergic inflammation is complex (41).
On the one hand, IL-10 has been shown to inhibit IL-5 produc-
tion, eosinophilic inflammation, and chemotaxis (42–44), but on
the other, may interfere with Th1 cytokine synthesis (41). In
subjects with asthma, both IL-10 mRNA transcripts and IL-10
levels in the BAL fluid were reduced. In mice, sensitization and
challenge resulted in significantly lower BAL IL-10 levels (45).
Of interest, immunotherapy was associated with enhanced
IL-10 production (46). Cumulatively, the evidence suggests that
IL-10 could be useful in controlling allergic inflammation.

Thus, it was somewhat surprising that in IL-10�/� mice
many of the parameters including eosinophilic inflammation,
Th2 cytokine production, and goblet cell hyperplasia were all

lower than in IL-10 sufficient mice. In addition, the deficient
mice failed to increase AHR to inhaled MCh in vivo when
lung resistance was measured. All of these responses were al-
tered when sensitized and challenged mice were infected with
live RSV. The cytokine data suggest that whereas the re-
sponse of IL-10�/� mice to allergic sensitization and chal-
lenge is less skewed to a Th2 phenotype than the WT mice, a
more pronounced Th2 response is promoted by RSV infec-
tion. Firstly, IL-5 levels in the BAL fluid of IL-10�/� sham-
infected allergic mice were significantly lower than in the WT
mice but following RSV infection, the IL-5 levels were in-
creased. This is in agreement with a recent study in which
IL-10�/� mice sensitized to allergen showed significantly re-
duced IL-5 production (47). In addition, we observed in-
creases in IFN-
 mRNA in the lung (data not shown); naive
IL-10–deficient mice demonstrated several fold higher levels
of IFN-
 mRNA than WT mice. The combination of allergen
sensitization and RSV infection resulted in lower levels of ex-
pression of IFN-
 mRNA. IFN-
 has been shown to modify
AHR in allergen-sensitized and -challenged mice (48, 49). Most
adult mice deficient in IL-10 develop a CD4 T cell-dependent
and IFN-
-mediated enterocolitis (50). In a recent study, spleen
cells isolated from IL-10�/� mice infected with Chlamydia
trachomatis also exhibited increased IFN-
 production (51).
Addition of neutralizing antibody to IL-10 in in vitro cultures
of peripheral blood mononuclear cells of normal human sub-
jects also increased production of IFN-
 (12).

In allergen-sensitized/challenged IL-10�/� mice, RSV in-
fection resulted in increases in airway goblet cell hyperplasia
and mucus staining, as it did in WT mice. Discharge of goblet
cell mucin content induced by RSV infection superimposed on
allergic sensitization has been demonstrated (52). Because
mucin production seems to be under the control of Th2 cyto-
kines such as IL-4, IL-9, and IL-13 (53–55), this provides addi-
tional support that RSV infection can enhance a Th2 pheno-
type in the allergic IL-10�/� mice.

Peebles and coworkers (56) recently described a model us-
ing BALB/c mice where RSV infection was given to OVA-
sensitized mice during the allergen challenge period. Consis-
tent with our results (57), they found increased AHR in the
OVA/RSV group on Day 15, at a time when AHR decreased

Figure 8. Anti–IL-5 treatment decreases AHR and BAL eosinophilia in
OVA-sensitized/challenged and RSV-infected IL-10�/� mice. Mice
were treated with control IgG or a monoclonal antibody against IL-5
and airway responsiveness was monitored by measuring lung resis-
tance (A). BAL was collected and cellular profile analyzed (B). The re-
sults for each group are expressed as means � SEM (n � 6 per group).
*Significant differences (p � 0.05) are indicated.

Figure 9. RSV strain lacking the G and SH genes (CP52) reconstitutes
AHR in IL-10�/� mice similarly to the parental wild-type strain (B1).
Mice were OVA sensitized/challenged and infected with sham prepa-
ration (OS) or with two strains of RSV, B1 (OR/B1) or CP52 (OR/CP52)
as described in METHODS. Airway responsiveness to inhaled MCh was
monitored by measuring lung resistance. *Significant difference (p �
0.05) between OS and the other groups.
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to basal levels in mice that were only sensitized to allergen.
They also found increased inflammation in the lungs of OVA/
RSV mice compared with sham-infected allergic mice. Sur-
prisingly, no AHR was found in the WT mice infected with
RSV without allergic sensitization. This is in contrast to the
findings described here and previously (27, 28) as well as the
findings of van Schaik and coworkers (58). Similarly, in guinea
pigs, RSV infection has been shown to cause AHR and to po-
tentiate the effects of allergic sensitization on both AHR and
inflammation (59–61).

Formalin-inactivated RSV vaccine, used for a limited time
in the 1960s, induced an atypical pulmonary inflammatory re-
sponse in children who later encountered RSV. This immuno-
pathological enhancement of disease has been studied exten-
sively in mice (reviewed in 62). In mouse models, one of the
important components of the virus that induces the eosino-
philic response is the major glycoprotein (G protein) (26). G
protein has been shown to modulate cytokine production in
human PBMC in vitro, such as inducing pronounced increases
in IL-10 production (63). We questioned, therefore, whether
G protein could be of importance in the enhancement of
AHR in the IL-10�/� mice. The data, however, showed that
the enhancing effect on AHR was independent of the expres-
sion of both G and SH genes.

To summarize, the present study illustrates that RSV infec-
tion can contribute in an essential way to the development of
AHR in allergen-sensitized/challenged IL-10–deficient mice.
The mechanism whereby active RSV infection together with al-
lergen sensitization can overcome the failure in development of
AHR in the IL-10�/� mice is not clear but may relate to the
combination of effects on lung inflammatory responses, changes
in cytokine levels, and goblet cell hyperplasia. These findings
may bear on the relationship between viral infection and hu-
man asthma. Asthmatic/allergic patients may demonstrate a rel-
ative IL-10 deficiency compared with healthy control subjects
(45). It is interesting therefore to note that following RSV infec-
tion, changes in airway function and cytokine responses can be
induced and enhanced in IL-10–deficient mice. 
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